
2.3   Molecular Orbitals in π-Conjugated Systems



Molecules with Several Mul9ple Bonds
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• alterna9ng double and single bonds are called “conjugated” double bonds 
• conjugated double bonds longer than normal, single bonds shorter, higher rota9on barrier

• bond lengths and energy barriers for rota+on for single bonds in dienes/trienes
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Molecules with Cumulated and Isolated Double Bonds
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• neither cumulated nor isolated mul9ple bonds “communicate”, i.e., interact electronically

• “cumulated double bonds” are in orthogonal planes, do not interact electronically

• isolated double bonds separated are in arbitrary planes, do not interact
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Molecules with Conjugated Mul9ple Bonds
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• conjugated mul9ple bonds interact with each other electronically, and electrons are delocalized 
across the whole system of π bonds

• alterna+ng mul+ple and single bonds are called “conjugated mul+ple bonds”

• “conjugated triple bonds” are in the same planes, pz and py orbitals are in direct contact
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Cyclic π-Conjugated Mul9ple Bonds
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• molecules with 2n+1 cyclic conjugated double bonds are par9cularly stable (Hückel rule) 
• compounds are called aroma9c, all bonds are symmetrically equivalent, bond order 1.5

• molecules with cyclic conjugated double bonds can be represented by two neutral canonical 
formulae (resonance structures)
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KEY CONCEPT: see reader “Quantum States of π-Electrons in Polyacetylene”  for details

“Electron in a 1D Box” Model for a Linear π-Conjugated Systems
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• 4 pz orbitals result in 4 linearly independent MO states 
• all resul9ng molecular π-orbitals are delocalized over all four carbon atoms (despite nodes)

• electron in 1D Box with infinite poten+al is a simple model for linear π systems
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see reader “Quantum States of π-Electrons in Polyacetylene”  for details

Fron9er Orbitals and Bond Orders in 1,3-Butadiene
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• double bonds have bond order <2, central single bond >1, restricted rota9on (30 kJ/mol)

• simplified schema+c MO energy diagram of the fron+er orbitals of 1,3-butadiene
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see reader “Quantum States of π-Electrons in Polyacetylene”  for details

Fron9er Orbitals and Bond Orders in 1,3,5-Hexatriene
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• all π-electrons delocalized over en9re molecule 
• HOMO/LUMO gap decreases, bond order of bonds converges to 1.5
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see reader “Quantum States of π-Electrons in Polyacetylene”  for details

Expanding the Model to Poly(acetylene)

85

• if chains were extended and coplanar, all MO would be delocalized over the whole chain 
• however, devia9on from coplanarity by “random coil” forma9on breaks delocaliza9on

• poly(acetylene) is an “infinite” linear chain of conjugated double bonds
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KEY CONCEPT: see reader “Quantum States of π-Electrons in Polyacetylene”  for details

Electron in a 1D Box Model of Poly(acetylene)
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• energy level En for poly(acetylene) with N carbon atoms, bond length d, for large N, scales with n2 

  

• HOMO and LUMO energy levels (for N electrons in N MO) at  n = N/2  and  n = N/2 + 1 

   and    

• HOMO-LUMO gap, and its limit for large N 

 

• for an “infinite” linear π-conjugated system, the HOMO-LUMO gap converges to zero!

En = ℏ2π2n2

2md2(N − 1)2 ≈ ℏ2π2n2

2md2N2 ∝ n2

EHOMO = ( N
2 )

2 ℏ2π2

2md2N2 ELUMO = ( N
2 + 1)

2 ℏ2π2

2md2N2

Eg = ELUMO − EHOMO = (N + 1) ℏ2π2

2md2N2 ≈ 1
N

ℏ2π2

1md2 ∝ 1
N



Electronic Structure of Extended Linear π-Conjugated Systems
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• set of MO with energy differences    much smaller than thermal energy   

• par9ally filled band, so poly(acetylene) would be a metallic conductor! (it is not!) 

• but energy levels ; so density of states (DoS) decreases with inreasing energy! (it does not!)

ΔE ∼ 1/N kBT

∝ n2
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KEY CONCEPT: see reader “Quantum States of π-Electrons in Polyacetylene”  for details

Hückel Theory of Linear π-Conjugated Systems
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• optoelectronic proper+es of molecules determined by “fron+er orbitals”, HOMO and LUMO 

• in π-conjugated molecules, HOMO and LUMO are π-orbitals from interac+on of 2pz orbitals 

• Hückel theory provides simple and fast solu9ons, in good agreement with precise calcula9ons, 
further approxima9ons: over molecular orbital theory (MOT) 

1. Born Oppenheimer approxima+on 

2. independent electrons approxima+on 

3. LCAO approxima+on  

4. no spa9al overlap between dis9nct pz orbitals,  

diagonal matrix elements , all others  

5. interac9ons only between direct neighbors 
diagonal matrix elements , between neighbors  for , all others 0 

6. all similar interac9ons are equal for all the 2pz orbitals  
diagonal matrix elements , elements between neighbors , all others 0

S = 0
αii − E βij

αii − E βij i − j = ± 1

α − E β



Hückel Theory of Linear π-Conjugated Systems
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• also energy level differences from Hückel theory approximately scale with ΔE ∼ 1/N

• Hückel theory results in more simplified secular determinant than LCAO, easier to calculate 

• model can be straighÜorwardly extended to linear π-conjugated systems with N carbons

α-E β-ES

β-ES α-E

α-E β

β α-E

α-E β 0 0 0 0

β α-E β 0 0 0

0 β α-E β 0 0

0 0 β α-E β 0

0 0 0 β α-E β

0 0 0 0 β α-E

LCAO, N = 2 Hückel, N = 2

Hückel, N = 6

En =Æ+2Ø ·cos
≥ n ·º

N +1

¥

C.A. Coulson, Proc. Poy. Soc. 1938, A164, 383; 1939, A169, 413; 1947, A192, 16.

• Eigenvalues for Schrödinger equa+on for Hückel model of linear system with N carbons:



see reader “Quantum States of π-Electrons in Polyacetylene”  for details

Energy Levels in Hückel Theory of Linear π-Conjugated Systems

90

• due to S = 0, symmetric energy spliyng centered around pz orbital level 

• isolated, not evenly spaced MO levels, but energy differences scale with  
• higher density of states at the top and the bo\om of the energy diagram 
• en9re π system thermodynamically more stable (delocaliza9on), but HOMO/LUMO more reac9ve

ΔE ∼ 1/N

• a graphical method to draw the rela+ve energy levels in linear π-conjugated systems
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H H4
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En = α + 2βcos ( nπ
N + 1 )



Electronic Structure of Extended Linear π-Conjugated Systems
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• discrete, unevenly spaced MO levels, but energy differences  

• par9ally filled band, so Hückel model predicts poly(acetylene) to be a metallic conductor! 
• different from electron in a 1D box model, lower density of states in the middle of the band

ΔE ∼ 1/N < kbT

• schema+c MO energy diagram of fron+er orbitals according to Hückel theory
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Electronic Structure of Extended Linear π-Conjugated Systems

92

• for poly(acetylene), bond length alterna9on gives overall lower energy 
• central density of states not only lower but reduced to 0, which opens band gap (of about 2.2 eV) 
• indeed all states fully delocalized on the molecular level (in single-crystalline state) 
• polyacetylene is a poor semiconductor, very few charge carriers and µ = 10–6 cm2 V–1 s–1

• Peierl’s distor+on: 1D metals are not thermodynamically stable, undergo geometry distor+on
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Electron in a Box Model for Cyclic π-Conjugated Systems
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• all π-orbitals extend over all six carbons, “do not look like” double bond MO 
• lowest MO is a constant, all others come in pairs of two (sin, cos), othogonal, degenerate in energy 
• two degenerate HOMO be\er stabilized than π* in ethene; aroma9c π-system more stable

• electron in a box with steady boundary condi+on is a simple model for cyclic systems
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Electron in a Box” Model for Cyclic π-Conjugated Systems

94

E

2pz

HOMO

LUMO

• two degenerate HOMO be\er stabilized than π* in ethene; aroma9c π-system very stable

H
H

H
H

H

H



C.A. Coulson, Proc. Poy. Soc. 1938, A164, 383; 1939, A169, 413; 1947, A192, 16.

Hückel Theory of Cyclic π-Conjugated Systems

95

• energy level differences for cyclic systems from Hückel theory scale with ΔE ∼ 1/N

• Hückel theory can also be applied to cyclic π-conjugated systems with N carbons 
• interac+ons between “first” and “last” carbons of the cycle result in addi+onal off-diagonal elements

Hückel, N = 6, cyclicHückel, N = 6, linear

α-E β 0 0 0 0

β α-E β 0 0 0

0 β α-E β 0 0

0 0 β α-E β 0

0 0 0 β α-E β

0 0 0 0 β α-E

α-E β 0 0 0 β

β α-E β 0 0 0

0 β α-E β 0 0

0 0 β α-E β 0

0 0 0 β α-E β

β 0 0 0 β α-E

• eigenvalues for Schrödinger equa+on for Hückel model of cyclic system with N carbons:

En = α + 2βcos( 2nπ
N

)



Approxima9on for the MO Energy Diagrams of Cyclic π-Conjugated Systems
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• Hückel rule for aroma9city: monocyclic conjugated systems, 4n+2 electrons, highly stable
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Energy Levels in Hückel Theory of Linear π-Conjugated Systems
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• due to S = 0, symmetric energy spliyng centred around pz orbital level 

• isolated, not evenly spaced MO levels, but energy differences scale with ΔE ∼ 1/N

• the same graphical method can also be used as a coarse approxima+on for the acene series 
• a more exact treatment would require addi+onal matrix elements (for cross-ring bonds)

benzene naphthalene tetracene

2pz

2pz 2pz



Electronic Structure of Polycyclic Aroma9c Hydrocarbons
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• HOMO-LUMO gap narrows, MO levels get closer, but s9ll located MO, no bands 
• high MW acenes would be metallic conductors but become too reac9ve to be handled

2 3 4
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Fron9er Orbitals of Benzene and Pentacene
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Examples of Aroma9city and Aroma9c Compounds
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• only benzene strictly fulfills Hückel defini9on of aroma9city (monocyclic, 4n+2 π electrons) 
• in a broader sense, all compounds with cyclic conjugated π-systems are called “aroma9c” 
• including compounds with heteroatoms, or systems with 4n π electrons (less stable)

• “aroma+city” is a historically derived concept to describe “unusual” chemical stability

N N N

benzene naphthalene anthracene tetracene pentacene

6π 10π 14π 18π 22π

pyridine quinoline acridine biphenyl pyrene

6π 10π 14π 6π+6π
16π

perylene

10π+10π



Electronic Structure of Polycyclic Aroma9c Hydrocarbons
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• upon increasing the size of the conjugated system, the HOMO-LUMO gap narrows 
• MO levels get closer, start to interact with one another, but s9ll located MO, no bands

benzene biphenyl terphenyl tetraphenyl pentaphenyl
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H H
2

H H
3

H H
4

H H
5



Fron9er Orbitals of Pentaphenyl
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Resonance Structures Involving Electron-Withdrawing Groups
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• overall electron density in the π-system decreased (compared to benzene) 
• every second carbon in delocalized π system is electron-poor (posi9ve par9al charge δ+)

• –M subs+tuents determine electron density and reac+vity pacerns in π-conjugated systems
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Resonance Structures Involving Electron-Dona9ng Groups
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• overall electron density in the π-system increased (compared to benzene) 
• every other carbon in delocalized π system is electron-rich (nega9ve par9al charge δ–)

• +M subs+tuents determine electron density and reac+vity pacerns in π-conjugated systems
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P. W. Atkins, Physical Chemistry, Chapter 10, 11th edi+on, Oxford University Press, 2017.

Homework and Reading Assignments
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Quantum States of ⇡-Electrons in Polyacetylene

Lucile Chassat - Samuel Van Gele

January 2021

1 LCAO Approach to Linear ⇡-Conjugated Systems

A simple MO treatment to a linear chain of N sp2-hybridized carbon atoms describes the ⇡
molecular orbitals as a set of linear combinations of the constituing pz atomic orbitals, the
members of the basis set.

�i =
X

j

cij ij, with i, j = 1 . . . N (1)

This results in a set of linear equations that can be written in matrix form and solved
from the secular determinant:

��������

↵11 � E �21 � ES21 . . . �N1 � ESN1

�12 � ES12 ↵22 � E . . . .
. . . . . .

�1N � ES1N . . . . ↵NN � E

��������
= 0 (2)

In the case of molecule where N > 2, the full MO treatment becomes more di�cult to
solve manually as the secular determinant becomes large but can be straightforwardly done
using mathematical software.

2 The Electron in a 1D Box Model

Figure 1: Schematic representation of the potential of a particle in a one-dimensional box
with infinite boundary potential

1



Learning Outcome
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• conjugated mul9ple bonds interact, and electrons are delocalized  

• all π-orbitals extend over all carbons and “do not look like” double bond MO 

• electron delocaliza9on par9cularly pronounced for (poly)cyclic systems 

• delocaliza9on can be represented by resonance structures 

• delocaliza9on in extended π-systems results in smaller bandgap 

• large systems (polymers) theore+cally have a band-like con+nuum of states 

• Peierl’s distor+on prohibits complete delocaliza+on, opens bandgap


